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An “Estimate & Score Algorithm” for
simultaneous parameter estimation and
reconstruction of incomplete data on social
networks
Rachel A Hegemann*, Erik A Lewis and Andrea L Bertozzi

Abstract

Dynamic activity involving social networks often has distinctive temporal patterns that can be exploited in situations
involving incomplete information. Gang rivalry networks, in particular, display a high degree of temporal clustering of
activity associated with retaliatory behavior. A recent study of a Los Angeles gang network shows that known gang
activity between rivals can be modeled as a self-exciting point process on an edge of the rivalry network. In real-life
situations, data is incomplete and law-enforcement agencies may not know which gang is involved. However, even
when gang activity is highly stochastic, localized excitations in parts of the known dataset can help identify gangs
responsible for unsolved crimes. Previous work successfully incorporated the observed clustering in time of the data
to identify gangs responsible for unsolved crimes. However, the authors assumed that the parameters of the model
are known, when in reality they have to be estimated from the data itself. We propose an iterative method that
simultaneously estimates the parameters in the underlying point process and assigns weights to the unknown events
with a directly calculable score function. The results of the estimation, weights, error propagation, convergence and
runtime are presented.

Keywords: Inferring incomplete data, Social networks, Gang rivalries, Hawkes process, Self-exciting point processes

Introduction
In this work we focus our attention on data sets of events
involving rival gangs on a social network. Each event in
the data set corresponds to a crime that occurs at a spec-
ified time and involves a pair of rival gangs. A subset of
these events are unsolved crimes in which one or both of
the rival gangs is not known. The method developed in
this paper could be broadly applied to any social network
involving activities in time between pairs of nodes on the
network. However the interest in the problem came about
by examining data from the Hollenbeck Division of the
Los Angeles Police Department, home to 29 street gangs
with a well-known rivalry network [1-3].

Unlike other methods used to address incomplete data
relating to social networks [4,5], the question at hand is

*Correspondence: Rachel.A.Hegemann@gmail.com
Department of Mathematics, University of California Los Angeles, 520 Portola
Plaza, Los Angeles CA, USA

not if a rivalry exists, but rather to which rivalry a violent
event belongs. This structure of between gang rivalries
can be viewed as a social network [6] often embedded
in space [1,2]. Violent events involving gangs tend to be
dyadic, and so we can formulate these events as a realiza-
tion of a stochastic process occurring on the edges of the
rivalry network. For each edge in the network there exists
a different stochastic process. In our analysis however, we
use identical parameters to generate synthetic data. The
method does not assume that the underlying parameters
generating each process are identical.

The first step to inferring the affiliation of the vio-
lent events is to understand the underlying stochastic
process. This requires us to capture the behavior of crim-
inal activity through computational means, much like in
[7-9]. Recently methods have been proposed in the litera-
ture to mathematically model gang violence. The authors
in [10] employ an agent-based model to investigate the
geographic influences in the formation of the gang rivalry

© 2013 Hegemann et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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structure observed in Hollenbeck. These authors consider
the long-term structure of the rivalry network embed-
ded in space. In terms of the rivalry violence, a shorter
timescale must be considered.

Violence among gangs exhibits retaliatory behavior [11].
In other words, given an event has happened between
two gangs, the likelihood that another event will happen
shortly after is increased. A problem such as this is mod-
eled naturally by a self-exciting point process. It is inter-
esting to note that these models were first used to analyze
earthquakes [12-15]. Since then, they have been used to
model financial contagion in credit markets [16,17], viral
videos on the web [18], terrorist activity in Indonesia [19],
and the spread of infectious disease [20]. In this analysis
we limit the scope of our model to include time only, thus
providing a baseline model.

The authors in [21] and [22] have successfully modeled
the pairwise gang violence as a Hawkes process [23]. All
of the events are associated with exactly one rivalry, or
edge of a social network. The violence on each edge, k, is
assumed to have the conditional intensity

λk(t|Hτ ,k) = μk + αk
∑
t>tj

ωke−ωk(t−tj). (1)

In this Hawkes process, the intensity λk(t|Hτ ,k) depends
on the history of the process Hτ ,k = {t1, t2, · · · tMk },
where Mk is the number of events for process, k. In this
framework, the window of time, [ 0, T], observed for each
process in the network is the same. However, the number
of events in each process, Mk , is stochastic, and there-
fore varies from process to process. In practice the final
time, T, is determined by the end of the data collec-
tion period. Further, the edges of the window introduce
boundary effects that are adjusted for in the parameter
approximation, see Equations 10 and 11.

The background rate of the process is defined by the
constant μk . In the context of gang rivalries, background
events can be thought of as random occurrences between
rival gangs that trigger retaliatory events. The expected
number of offspring for any event is determined by the
constant αk , and the decay of the intensity back to the
background rate is ωk . Offspring events, in this context,
could be interpreted as retaliatory events. Larger values
for μk and αk produce more background and offspring
events respectively. Larger values of ωk do not influence
the total number of events, but rather the amount of
clustering in time.

The authors of [24] produce a mathematical frame-
work to solve the incomplete data problem observed in
gang violence data sets. In their work they use an opti-
mization strategy that computes the weights to infer the
rivalry affiliation of the incomplete data. In this formu-
lation the authors prove that their optimization has a

unique solution under mild constraints. This is substan-
tial contribution in inferring the affiliation of the unknown
violent events. However, the authors of [24] assume that
the process parameters are known, an assumption that is
often not feasible in practice. Further, finding the weights
requires solving a computationally expensive optimization
problem.

We propose an iterative method that (A) estimates the
process parameters assuming the data is generated by
the process defined by Equation 1 and (B) infers the
process affiliation of simulated data via a direct method
of computation. We iterate between (A) and (B) until
the estimates for the unknown events converge. We call
this the Estimate & Score Algorithm (ESA). The details
of the ESA are described in Section “The Estimation &
Score Algorithm (ESA)”. The ESA is tested on simulated
data in Section “Results”, with analysis of the estima-
tion of the parameters in the presence of incomplete
data (see Subsection “Estimation analysis”) and compar-
ison of the proposed score functions with that of the
Stomakhin-Short-Bertozzi (SSB) method in [24] (see Sub-
section “Updating Weights analysis”). In Subsection “Run-
time Analysis” there is an analysis of the runtime between
the Stomakhin-Short-Bertozzi and the Forward Backward
score functions used to update the weights (see Sub-
section “Runtime Analysis”). Subsection “Convergence
Results” contains an analysis of the convergence of the
Estimation & Score Algorithm. This method solves the
more realistic problem of estimating the process and the
weights. Further, the computation for the weight updates
is more direct and therefore avoids performing the costly
optimization scheme used in [24]. This is a novel piece of
work with many exciting extensions. A final discussion of
the results and future work is presented in Section “Dis-
cussion and Future Work”. As in [24] we do not use
field data in this paper, rather we generated point pro-
cess data using similar parameters as observed in the field
data for Hollenbeck [22]. By using simulated data to test
the algorithms we have actual ground truth evaluate the
performance of the method.

Problem Formulation
The data is assumed to lie on a known social network
containing K processes, where each of the K processes
is a pairwise rivalry between two gangs. From this set of
events, there are a total of N events where the time is
known, but the processes affiliation is not known. These
events are referred to as unknown events. Each of the N
unknown events are placed into each of the K processes.
Since the process affiliation is not known for all of the
events in the network, each event is given an associated
weight, Si,k . Here Si,k is the ith element of the kth process.
If the event is known Si,k = 1. If Si,k is unknown then it is
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Figure 1 Simplified representation of the rivalry network with
known (circle) and unknown (triangle) events. The known events
are depicted with circles and the one unknown event is depicted
with a triangle. Note that since we do not know the affiliated process
of this event, we place it in all processes. Associated with this event is
a weights Si,k ∈[ 0, 1] such that

∑K
k=1 Si,k = 1.

assigned a number between 0 and 1 by our algorithm. We
enforce the constraint that

∑K
k=1 Si,k = 1.

A simplified representation of our problem formu-
lation can be found in Figure 1. The known events
are represented by circles and the unknown event is

represented by a triangle. Here we can see that since we do
not know the affiliation of the triangle event, it is placed
in all of the other processes. We emphasize that this rep-
resents our lack of information about which rivalry it
belongs to.

As indicated in Figure 1, for each process in the net-
work events ei,k are indexed by increasing time, t1 ≤
t2 ≤ t3 · · · ≤ tMk . Ordering the events in such a way
has the consequence that the first unknown element in
time, for example, may have different indexes for different
processes. In Figure 1 the triangle index in first process
is the third event, e1,3. However the triangle in the Kth
process is the second event, eK ,2. One can easily keep
track of the local index of a unknown event for each
process.

The Estimation & Score Algorithm (ESA)
The proposed Estimation & Score Algorithm can be
broken into three basic stages: initialization, parameter
estimation, and updating the weights. This method is
succinctly described in Figure 2.

Figure 2 Flow chart of the Estimation & Score Algorithm. There are two ways to implement this method. The first, (left of initialization), is the
algorithm used when given an incomplete data set. The second, (right of initialization), is the algorithm used in this paper to simulate the data and
test the components of the ESA. The two main phases of the algorithm are the Estimation phase (see Section “Estimation analysis”) and the Update
Weights phase (see Section “Updating weights”).



Hegemann et al. Security Informatics 2013, 2:1 Page 4 of 13
http://www.security-informatics.com/content/2/1/1

Initialization
For this paper, there were two ways of initializing the Esti-
mate & Score Algorithm. The first is used to infer rivalry
affiliation given field data. After importing the data, the
unknown events are identified and placed into each of the
of the K processes. The weights, Si,k , must also be ini-
tialized. If the event is known, then Si,k=1. If the event is
unknown then Si,k = 1

K .
An alternate initialization utilizes simulated data in

order to test the components of the Estimate & Score
Algorithm. In this case, data is generated from K indepen-
dent Hawkes processes with given μk , αk , and ωk . From
these data, choose N events at random from the network
to mark as unknown. Place these N unknown events into
each of the other processes. Initialize the weights such that
for known events Si,k = 1 and for unknown events Si,k =
1/K . This initialization process is used in this paper to test
the method and produce the results in Section “Results”.

Parameter Estimation
In the presence of no unknown events, there are both
parametric [12] and nonparametric [25-28] ways to
model the underlying stochastic process on each edge of
the social network. For this work, we chose a parametric
form for the triggering density to validate the model but
the results could easily be extended to the nonparamet-
ric case. We note that, as is usual with nonparametric
estimates, speed would be compromised for the sake of
flexibility.

For this paper, the data is assumed to be a realization
of Equation 1, where the parameters are estimated using
a method similar to the Expectation Maximization (EM)
algorithm [29]. An EM-like approach is taken because of
the branching structure present in a Hawkes process. In
such a process each event can be associated with a back-
ground or response event. However, given a realization
from this process it is not immediately obvious whether
an event is a background or response event. We can view
this information as a hidden variable that we must esti-
mate. In this way, every event in each of the K processes
is assigned a probability Pk

i,j. The probability that event
i is a background event is denoted Pk

i,i, and probability
that event i caused event j is denoted Pk

i,j. This assumes
that ti < tj. From this EM estimation, the approxima-
tion for each of the variables is altered to include the
weights for the unknown events. In fact, in the case where
all the events are known, the estimation formulas are the
same. This section derives the EM estimates when in the
presence of incomplete data.

The classical log-likelihood function �̂k(Hτ ,k|μk , αk , ωk)
for a general point process with a fixed window [ 0, T] is

�̂k(Hτ ,k |μk , αk , ωk) =
Mk∑
i=1

λk(ti|Hτ ,k) −
∫ T

0
λk(t|Hτ ,k)dt. (2)

Incorporating the branching structure into the log-
likelihood function, the event association is added as a
random variable, χi,j such that

χi,j =
⎧⎨
⎩

1 if eventi caused eventj andi �= j
1 if eventi is a background event andi = j
0 else

.

(3)

This branching allows us to separate those events
associated with the background μk and the response
g(t) = αkωke−ωkt . This leads to the altered log-likelihood
function

�k(Hτ ,k |μk , αk , ωk) =
Mk∑
i=1

χi,i log(μk) −
∫ T

0
μkdt (4)

+
Mk∑
i=1

⎧⎨
⎩

Mk∑
j=i+1

χi,j log
(
αkωke−ωk(tj−ti)

)

−
∫ T−ti

0
αkωke−ωk(s)ds

⎫⎬
⎭ .

Taking the expectation of �k(Hτ ,k|μk , αk , ωk) with
respect to χi,j results in

Eχ [ �k(Hτ ,k |μk , αk , ωk)] =
Mk∑
i=1

Pk
i,i log(μk) −

∫ T

0
μkdt (5)

+
Mk∑
i=1

⎧⎨
⎩

Mk∑
j=i+1

Pk
i,j log

(
αkωke−ωk(tj−ti)

)

−
∫ T−ti

0
αkωke−ωk(s)ds

⎫⎬
⎭ .

In the EM algorithm, the quantity
Eχ [ �k(Hτ ,k|μk , αk , ωk)] is maximized with respect to each
of the variables μk , αk , ωk given the data Hτ ,k . This leads
to the EM estimates

μk =
∑Mk

i=1 Pk
i,i

T
, αk =

∑Mk
i<j Pk

i,j

Mk − ∑Mk
i=1 e−ωk(T−ti)

(6)

ωk =
∑Mk

i<j Pk
i,j∑

i<j(tj − ti)Pk
i,j + αk

∑Mk
i=1(T − ti)e−ωk(T−ti)

. (7)

Where Pk
i,j is defined by

Pk
i,j = αkωke−ωk(tj−ti)

λk(ti|Hτ ,k)
, Pk

i,i = μk
λk(ti|Hτ ,k)

, (8)

for ti < tj. The EM algorithm then becomes a mat-
ter of iterating between estimating the probabilities and
the parameters. It has been proven that this algorithm
will converge under mild assumptions [29]. Further,
Equation 6 adjusts for boundary effects.
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In the presence of events with unknown process affilia-
tion in the network, we assign weights to the contribution
of each event to the log-likelihood function. Specifically,
each of the unknown events in process k have a weight
Si,k , such that

∑
k Si,k = 1. For the known events Si,k = 1.

These weights are incorporated for each process via

Lk(Hτ ,k|μk , αk , ωk)

=
Mk∑
i=1

Pk
i,iSi,k log(μk) −

∫ T

0
μkdt

+
Mk−1∑

i=1

Mk∑
j=i+1

Si,kSj,kPk
i,j log

(
αkωke−ωk(tj−ti)

)

−
Mk∑
i=1

Si,k

∫ T−ti

0
αkωke−ωk(s)ds. (9)

Note that Lk(Hτ ,k|μk , αk , ωk) is no longer an EM log
likelihood in the presence of unknown data. Maximizing
Lk(Hτ ,k|μk , αk , ωk) with respect to each of the parameters
the estimates become

μk =
∑Mk

i=1 Pk
i,iSi,k

T
,

αk =
∑Mk

i<j Pk
i,jSi,kSj,k∑Mk

i=1 Si,k − ∑Mk
i=1 Si,ke−ωk(T−ti)

(10)

ωk =
∑Mk

i<j Pk
i,jSi,kSj,k∑

i<j(tj − ti)Pk
i,jSi,kSj,k +αk

∑Mk
i=1 Si,k(T −ti)e−ωk(T−ti)

.

(11)

When all of the events are known, i.e. Si,k = 1 when
unknown event i, k belongs to process k and is zero
otherwise, these estimates become identical to the EM
parameter estimates.

Updating weights
At the start of the Estimation & Score algorithm all of
the weights for the unknown events are Si,k = 1/K .
Once the parameters are estimated using the altered EM
algorithm described in Equation 11, the weights, Si,k , are
updated, see Figure 2. Here we present four different score
functions and the Stomakhin-Short-Bertozzi method [24],
used to define, qi,k , the intermediate process affiliation.
Each of these score functions synthesize information from
different portions of the data set. Given an event early
in the data set, a score function that uses future events
would be ideal. On the other hand, for later events a score
function using previous events is desired. Similar consid-
erations should be made if there are portion of the data
with more incomplete data. After all of these intermediate
weights, qi,k , have been calculated, they are re-normalized

Figure 3 Plot of the parameter estimates for μk as the number of
unknown events increase. Plots of the estimates for μk for the
Unknown Not Included (dash-triangle), Unknown Included (dash-
square), Equal Weights (dash-x), ESA (dash-circle), and No Unknown
(solid). In each of the three figures, the estimates are plotted vs the
number of unknown events. Each network has five processes with the
true parameters μk = 0.01, ωk = 0.1, and αk = 0.5. Each data point
presented is the average of the results from 100 simulated networks.

as a probability via Si,k = qi,k∑
k qi,k

. For simplicity we con-
sider a response function of the form, gk(t) = αkωke−ωk(t).

Ratio Score Function
The Ratio score function considers the ratio of the back-
ground rate μk and the sum of all the future events,∑

i<j gk(tj −ti). Mathematically the score is determined by

qRatio
i,k =

∑
i<j gk(tj − ti)

μk(ti)
. (12)

Lambda Score Function
The Lambda score function uses only previous informa-
tion by taking the ratio of the intensities evaluated at the
unknown event time ti.

Figure 4 Plot of the parameter estimates for αk as the number of
unknown events increase. Plots of the estimates for αk for the
Unknown Not Included (dash-triangle), Unknown Included (dash-
square), Equal Weights (dash-x), ESA (dash-circle), and No Unknown
(solid). In each of the three figures, the estimates are plotted vs the
number of unknown events. Each network has five processes with the
true parameters μk = 0.01, ωk = 0.1, and αk = 0.5. Each data point
presented is the average of the results from 100 simulated networks.
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Figure 5 Plot of the parameter estimates for ωk as the number of
unknown events increase. Plots of the estimates for ωk for the
Unknown Not Included (dash-triangle), Unknown Included (dash-
square), Equal Weights (dash-x), ESA (dash-circle), and No Unknown
(solid). In each of the three figures, the estimates are plotted vs the
number of unknown events. Each network has five processes with the
true parameters μk = 0.01, ωk = 0.1, and αk = 0.5. Each data point
presented is the average of the results from 100 simulated networks.

qLambda
i,k = λk(ti|Hτ ,k)∑K

m=1 λm(ti|Hτ ,k)
(13)

Stomakhin-Short-Bertozzi (SSB) method
The method defined in [24] is summarized by

max

⎧⎨
⎩
∑

k

∑
ij

δi,jμkqSSB
i,k + 1

2
(1−δij)αkωke−ωk |tk

i −tk
j |qSSB

i,k qSSB
j,k

⎫⎬
⎭ ,

(14)

subject to

K∑
k=1

(
qSSB

i,k

)2 = 1. (15)

This method is motivated by the Hawkes process
defined in Equation 1.

Probability Score Function
The Probability score function uses the approximation of
the branching structure of the underlying process. The
idea behind this method is events that are background
events with no corresponding response events should not
belong in the process. An event that is a background with
many response events or an event that is a response to
another event should be part of that process.

qProb
i,k =

∑
tj>ti Pk

i,j

Pk
i,i

(16)

Pk
i,i = μk(ti)

λk(ti|Hτ ,k)
Pk

i,j = gk(tj − ti)

λk(tj|Hτ ,k)
(17)

Forward Backward Score Function
This method is the ratio of the summation of the response
for the events in the future and the past,

∑
i�=j gk(|ti − tj|)

over the background rate μk .

qFB
i,k =

∑
i�=j gk(|ti − tj|)

μk
(18)

Results
The Estimation & Score Algorithm is tested for accu-
racy on simulated data from the Hawkes process defined
in Equation 1. An analysis of the parameter estimation
method outlined in Subsection “Parameter Estimation”
is conducted in Subsection “Estimation analysis”. A com-
parison of the score functions when assuming the true
parameters is found in Subsection “Updating Weights
analysis”. Subsection “Runtime Analysis” provides a com-
parison of the runtime between the Forward Back-
ward score function and the Stomakhin-Short-Bertozzi
method. A example of convergence of the Estimate &
Score Algorithm is provided in Subsection “Convergence
Results”.

Table 1 Average and standard deviations for μk on 100 networks, true value is μk = 0.01

# unknown 15 30 45 60 75

Equal (Ave) 0.0102 0.0098 0.0100 0.0099 0.0096

Weights (StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0015 ±0.0015

ESA (Ave) 0.0099 0.0093 0.0093 0.0091 0.0086

(StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0014 ±0.0014

Unknown (Ave) 0.0098 0.0091 0.0089 0.0085 0.0079

Not Included (StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0015 ±0.0015

Unknown (Ave) 0.0117 0.0129 0.0143 0.0157 0.0167

Included (StDev) ±0.0014 ±0.0017 ±0.0019 ±0.0016 ±0.0019

No Unknown (Ave) 0.0100 0.0095 0.0094 0.0093 0.0088

(StDev) ±0.0014 ±0.0014 ±0.0017 ±0.0015 ±0.0015
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Table 2 Average and standard deviations for αk on 100 networks, true value is αk = 0.5

# unknown 15 30 45 60 75

Equal (Ave) 0.4678 0.4573 0.4340 0.4220 0.3989

Weights (StDev) ±0.0636 ±0.0759 ±0.0686 ±0.0726 ±0.0699

ESA (Ave) 0.4853 0.4903 0.4795 0.4786 0.4642

(StDev) ±0.0640 ±0.0767 ±0.0712 ±0.0741 ±0.0719

Unknown (Ave) 0.4712 0.4646 0.4429 0.4348 0.4132

Not Included (StDev) ±0.0638 ±0.0779 ±0.0700 ±0.0737 ±0.0702

Unknown (Ave) 0.4580 0.4364 0.4172 0.4032 0.3855

Included (StDev) ±0.0668 ±0.0822 ±0.0705 ±0.0799 ±0.0818

No Unknown (Ave) 0.4820 0.4838 0.4741 0.4750 0.4595

(StDev) ±0.0647 ±0.0759 ±0.0726 ±0.0748 ±0.0689

Estimation analysis
There are many ways we could allow the unknown events
to influence our estimates of the underlying parameters
for each process. There are two extremes. On the one
hand, we could exclude all of the unknown events from the
parameter estimation. This would be equivalent to setting
the Si,k = 0 for all unknown events. On the other hand, we
could include all of the unknown events in the estimation
of the parameters for each process. This would be equiv-
alent to letting Si,k = 1 for all i and k. Another possible
estimation method is some combination of these two. We
propose this as a way of allowing the unaffiliated events to
play some role in the estimation process. The naive choice
is allowing each event to play the same role in each pro-
cess. This amounts to setting Si,k = 1/K for the unknown
events. We compare these three choices to the estimations
obtained by the Estimate & Score Algorithm (ESA) using
the Forward Backward score function. Finally, we want to
compare all four of these possible estimation techniques
to the best we could possibly do. In this case, that would
mean we knew all the affiliations for the events (i.e. there
are no unknown events).

Figures 3, 4, 5 displays the results for the μk , αk , and
ωk estimates for the five cases: Si,k = 0 for unknown
events (dash-triangle), Si,k = 1 for unknown events (dash-
square), Si,k = 1/K for unknown events (dash-x), the
results using ESA (dash-circle), and the estimates you get
when you know all the affiliations for the unknown events
(solid). These results with standard deviations are dis-
played in Tables 1, 2, 3. In each of the three figures, the
estimates are plotted vs the number of unknown events.
Each network has five processes with the true parameters
μk = 0.01, ωk = 0.1, and αk = 0.5. Different networks
are created with 15, 30, 45, 60, and 75 unknown events.
We estimate the parameters using each of the five meth-
ods explained above. This procedure is repeated 100 times
with different random seed values and then the average
estimate is calculated.

Notice in the estimates for μk in Figure 3 and Table 1,
the ESA performs the best compared to the true value
and has only a slight reduction in accuracy as the number
of unknown events increases. On average the other three
estimates seem to degrade more rapidly as the number of
unknown events increases. When Si,k = 1, the estimates

Table 3 Average and standard deviations for ωk on 100 networks, True Estimate is ωk = 0.1

# unknown 15 30 45 60 75

Equal (Ave) 0.1070 0.1041 0.1042 0.1051 0.10364

Weights (StDev) ±0.0264 ±0.0274 ±0.0262 ±0.0248 ±0.0255

ESA (Ave) 0.1069 0.1042 0.1039 0.1059 0.1045

(StDev) ±0.0263 ±0.0273 ±0.0264 ±0.0255 ±0.0240

Unknown (Ave) 0.1075 0.1054 0.1063 0.1060 0.1054

Not Included (StDev) ±0.0264 ±0.0286 ±0.0269 ±0.0246 ±0.0269

Unknown (Ave) 0.1048 0.1101 0.0988 0.1022 0.0993

Included (StDev) ±0.0275 ±0.1035 ±0.0273 ±0.0301 ±0.0285

No Unknown (Ave) 0.1078 0.1057 0.1055 0.1070 0.1054

(StDev) ±0.0265 ±0.0277 ±0.0256 ±0.0241 ±0.0230
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for μk are far above the true value and growing as the
number of unknown events increases. This follows from
the fact that letting Si,k = 1 means we are effectively
adding events to the network. Take the case when K = 2.
Assume that each process has 1000 events, and there are
100 unknown events from each process. When we esti-
mate the parameters for the first process, we will use the
900 events we know plus the 200 unknown events from
the network. We will get the identical number of events
in our estimation for process two. This creates 200 new
events and thus biases the estimates for μk . This moti-
vated the idea of equal weighting for each unknown event,
and that choice is validated by the estimates for μk . A sim-
ilar argument shows why Si,k = 0 (i.e. ignoring all the
unknown events) has the lowest estimate for μk at each
level of incomplete data.

In the estimates for the branching ratio αk , the ESA on
average yields the best estimates and maintains its accu-
racy in the presence of unknown events. It is interesting
to note that equal weighting performs worse here than if
we let Si,k = 0 for all unknown events. Using the ESA
overcomes this drawback. Again, setting Si,k = 1 for
all unknown events performs the worst. This could stem
from the fact that most of the unknown events are being
labeled background and thus this estimation technique
underestimates the branching ratio because fewer events
are considered offspring. Notice that the estimate for ESA
(dash-circle) tracks the best possible estimate (solid) well
while the other three start to trail off as more and more
information is labeled as unknown.

Finally, in Figure 5 and Table 1, it is shown that the
ESA estimate (dash-circle) for ωk tracks the behavior of
the best estimate (solid) closer than the other methods.
Including all of the unknown events (dash-square) pro-
vides the poorest estimate for ωk . For the other three
estimation techniques we see that they are all comparable.

Updating Weights analysis
To understand the strengths and weaknesses of each of
the five score functions, defined in Subsection “Updat-
ing weights”, the score functions were evaluated for 100
incomplete events using the true values for μk , αk , and ωk
when taking the Top 1, Top 2, and Top 3 best inferences.
For comparison to [24], the true parameters were taken
to be μk = 0.01, ωk = 0.1, and αk = 0.5. Due to the
stochastic nature of the processes, for each level of process
number 100 random networks were tested. The average
results of this analysis are found in Figure 6. The number
correctly identified by the each of the score functions is on
the vertical axis. The horizontal axis displays the number
of processes in the network.

From Figure 6 it is clear that the Stomakhin-Short-
Bertozzi score function in solid dark blue, and the

Figure 6 Display of the number of correctly identified unknown
events out of 100. Display of the number of correctly identified
unknown events when the Top 1, Top 2, and Top 3 inferences are
taken into consideration. For all score functions, the parameters are
μk = 0.01, ωk = 0.1, and αk = 0.5, and assumed to be known. The
Stomakhin-Short-Bertozzi score function (solid dark blue x) and the
Forward Backward score (cyan dashed diamond), the Probability
(black dashed asterisk) and Ratio (solid green square) score functions,
and the Lambda (magenta dashed circle) score function and chance
(solid dark green plus) produce comparable results with these
parameters.

Forward Backward score function (cyan dashed diamond)
perform nearly identically when looking at the Top 1, Top
2, and Top 3 inferences. These functions look both for-
ward and backward in time from the incomplete event,
and are therefore able to identify clusters of events in time.
The Probability (black dashed asterisk) and Ratio (solid
green square) score functions don’t do nearly as well the
Stomakhin-Short-Bertozzi and Forward Backward score
functions, but better than the Lambda (magenta dashed
circle) score function. The Lambda score function appears
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to perform close to chance (dark green solid plus) for the
Top 1, Top 2, and Top 3 inferred process affiliation. Due
to the success of the Forward Backward score function
and the Stomakhin-Short-Bertozzi method, only these are
used for further analysis.

The analysis comparing the score functions assumed
that the true parameters were known. However, when
applying this method in practice there will be error in the
estimated parameters. This estimation error will propa-
gate through to the score functions. To understand how
deviations of the estimated parameters influence the score
functions pairwise combinations of the parameters were
increased and decreased by 90% from the target values
μk = 0.01, ωk = 0.1, and αk = 0.5 in 10% increments.
In particular the Forward Backward and SSB score func-
tions are computed for pairwise combinations of μ in the
range of [ 0.001, 0.019], ω in the range of [ 0.01, 0.19], and
α in the range of [ 0.05, 0.95]. Further, in these pairwise
combinations, the third parameter is kept at the target
value. Notice that a 90% change is larger than the errors
observed in the parameter estimates in Subsection “Esti-
mation analysis”.

To examine the propagation of errors of the param-
eters to the score functions one event from a network
with 10 processes is chosen to be unknown. The score
function S1,true with the target parameters, μk = 0.01,
ωk = 0.1, and αk = 0.5 for the true process is calculated.
Then, on the same network, the parameters are offset
by

̂parameter = parameter ± %change · parameter. (19)

The offset score function Ŝ1,true is calculated from these
offset parameters. The difference between S1,true − Ŝ1,true
is taken for each pairwise combination of parameters.
Again, due to the stochastic nature of the processes, each
analysis was done for 100 runs and the average differ-
ence in score functions is recorded. The results of this
analysis are displayed in Figure 7 with those of the For-
ward Backward score function (left), and those for the
Stomakhin-Short-Bertozzi score function (right). In gen-
eral the Stomakhin-Short-Bertozzi score function is more
sensitive to the changes than the Forward Backward score
functions for the μk and αk parameters. Changes in the

Figure 7 Error propagation. The average difference of the Forward Backward and Stomakhin-Short-Bertozzi score functions with the parameters
varied by ±90% of the target values, μk = 0.01, ωk = 0.1, and αk = 0.5.
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Forward Backward score functions are minimal for most
changes of parameters except for small values of ωk . As ωk
decreases then the approximated Forward Backward score
function decreases, causing a positive difference. As seen
in Subsection “Estimation analysis”, Figure 5, when esti-
mating ωk , there is a tendency to over, not under estimate
the parameter, and so this does not appear to occur within
these parameters. The changes in the Stomakhin-Short-
Bertozzi score function depend on all of the pairwise
changes of the parameters. As μk increases the computed
Stomakhin-Short-Bertozzi decreases. On the other hand,
as ωk or αk increase the score function increases. This
analysis shows that though the Stomakhin-Short-Bertozzi
method and the Forward Backward score functions pre-
form similarly when the parameters are known exactly,
under the influence of estimation error the Stomakhin-
Short-Bertozzi score function varies more than the For-
ward Backward score function.

Runtime Analysis
Though the Forward Backward score function and the SSB
method produce comparable results in terms of accuracy,
there is a sizable difference in the time it takes to update
the weights using these methods.

The Forward Backward score function is designed to
be direct, meaning calculates the weights using available
information without need for iteration. The Stomakhin-
Short-Bertozzi method, however, determines the weight
by solving a optimization problem. A closed form solution
for the maximized weights is not known to these authors,
so the weights are found by numerically approximating
the weights that maximize Equation 14. In the imple-
mentation of the Stomakhin-Short-Bertozzi we employ
a gradient ascent method which requires 4-11 iterations
to reach convergence with a tolerance of 0.001. The
direct methods, Forward Backward, Probability, Ratio,
and Lambda score functions, are on the same order of
operations as one iteration of the gradient ascent used
to solve Equation 14. Specifically, one iteration of the
gradient ascent method and calculating the direct score
functions are O(N · K · M) where N is the number of
unknown events, K is the number of processes and M is
the expected number of events in process k. The expected
number of events in process k can be further analyzed via,

M = E[ Mk] = μk · T · 1
1 − αk

+ K − 1
K

N . (20)

The run time of both the Forward Backward function
and the Stomakhin-Short-Bertozzi method are empiri-
cally examined in Figure 8. Both score functions were
calculated with 20 networks for each level of number
unknown events and number of processes with the known
parameter values of μk = 0.01, ωk = 0.1, and αk = 0.5.
All of the run times are calculated in milliseconds. It can

Figure 8 Example run time. Average run time comparison in
milliseconds between the Forward Backward function and the
Stomakhin-Short-Bertozzi method.

be seen that the average run time needed to compute
the Forward Backward function at every level of N and
K is substantially less than that of the Stomakhin-Short-
Bertozzi method. Also, it is clear from this figure that the
time needed to calculate both of these methods increases
as N and K increase.

Convergence Results
The Estimation & Score Algorithm converges quickly
when either the Forward Backward score function or
Stomakhin-Short-Bertozzi method are used. Figure 9 dis-
plays the parameter estimates for a typical run of the
Estimation & Score Algorithm for both the Forward Back-
ward (left) and Stomakhin-Short-Bertozzi (right). Both
score functions produce qualitatively similar results, and
it appears that the rate of convergence is comparable for
both cases. The estimated weights for one unknown data
event for this typical run versus the iteration for each
process are plotted in Figure 10. The weights plotted are
obtained from the Forward Backward score function (left)
and the Stomakhin-Short-Bertozzi method (right). It is
interesting to note that both methods of weighting choose
the same process affiliation as the most likely. Further tests
were conducted with a variable initial weighting. These
runs showed similar behavior as initializing the Estimate
& Score Algorithm with Si,k = 1/K , implying that the Esti-
mate & Score Algorithm is robust to small perturbations
of the initial weighting.
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Figure 9 Parameter estimates vs. the iteration number. Plots of the parameter estimates for a typical run of the Estimate & Score Algorithm
using the Forward Backward (left) and Stomakhin-Short-Bertozzi (right) methods. Both methods compute nearly identical estimates of the
parameters for each of the ten processes. The choice for plotting event 99 was random.

Figure 10 Estimated weights vs. iteration. Plots of the weights for one unknown event computed by a typical run of the Estimate & Score
Algorithm using the Forward Backward (left) and Stomakhin-Short-Bertozzi method (right). The choice for plotting event 99 was random.
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Discussion and Future Work
In this paper we propose an effective method for simulta-
neously estimating the parameters and assigning process
affiliation in case of incomplete field data from self-
exciting point processes on a network. This problem
comes from the demand for law enforcement agencies to
identify gang affiliation in the case of unsolved crimes
in an area of highly complex gang rivalry activity. We
present a new framework we name the Estimate & Score
Algorithm for possible application to field data. By test-
ing the method on simulated datasets we can understand
its performance features and liabilities. The method is
an iterative procedure in which process parameters are
estimated alternately with the calculation of network affil-
iation probabilities. We identify several useful ‘score func-
tions’ for calculating the network affiliations. We also
compare the use of unknown events in the parameter esti-
mation. One upshot of our analysis is that the inclusion of
unknown events may increase the accuracy of the param-
eter estimation. Several score functions are considered
and the Forward Backward score function shows the most
promise with comparable results to that of the Stomakhin-
Short-Bertozzi method of [24] in the parameter regime
tested. The score function calculation is a direct method
that does not rely on solving a variational problem, and
thus is more computationally efficient than [24].

For future work, space often plays a role in understand-
ing criminal activity [8,30-33]. Further, criminal behav-
ior has non-random structure and can often be framed
in terms of routine activity theory [34,35]. In the case
of gang violence, there is a strong spatial component
[1,10,36]. One can extend the Estimate & Score Algo-
rithm to include space. There is a precedence in the
earthquake literature of adding space to self-exciting point
processes [13,15], however, in the case of gang violence,
the spatial response may be different. Instead of retalia-
tory events clustering around prior events, it appears that
the data is clustered around regions in space. A spatial
model similar to that of [37] could be employed, where
the triggering density in space is related to their respec-
tive gang set-space, or center of activity [38]. Statistically
when modeling spatial point processes one needs to tease
out the difference between hot spots due to risk hetero-
geneity versus event dependence. The data given will be
one realization of the underlying process, however using
techniques such as prototyping [39], one could potentially
reformulate the data into multiple realization of the same
process and distinguish between these two phenomena.

There are other factors in the data that can be fused
into the model, though more analysis would be required.
For example, in earthquake modeling the magnitude of
the earthquake is often included. To include such a factor
to the intensity λk(t|Hτ ,k) one would need to determine
a numerical metric to define the impact of each event

type. This is not a straightforward task and would require
further investigation. Extending this model in this way
could allow for the inclusion of events involving tagging,
or other low level gang crimes, which could be a precur-
sor to more extreme violent interactions between gangs.
Including this data is outside of the scope of the current
model but has a strong potential to enrich the overall data
set allowing for better analysis.

It is important to note that there are other methods to
approximate the underlying form of the self exciting pro-
cess. For example the authors in [28] consider the general
form of the intensity function λk(t|Hτ ,k) to be

λ(t|Hτ ) = μ(t) + α
∑
t>tj

g(t − tj). (21)

Using a non-parametric method, they are able to
approximated the background function μ(t) and the
response function g(t) for a broader class of functions. In
this paper, the data was assumed to come from a Hawkes
process with constant background rate and an exponen-
tial response to previous events. There are cases where the
background rate is not constant [40]. Further it is conceiv-
able that the response function could be of a form other
than an exponential decay. In this circumstances, the
model for λ(t|Hτ ) in Equation 1 would not be appropriate.

Finally, this method has a great potential in the field
of policing. Once such a model has been calibrated cor-
rectly, the Estimation & Score Algorithm using the quicker
Forward Backward score function can be used to infer
the gang association in real time, while the investigation
is on going. Given an accurate model of the underlying
process, such a method could identify rivalries that have
heightened activity.
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